When troubleshooting a quad problem or when getting a new build configured, I’m regularly plugging in a battery to a quad to power the motors, VTX, and receiver, and then unplugging it again. I don’t like to leave the battery plugged in any longer than necessary since the VTX can quickly overheat and damage itself. They’re designed with the expectation that the quad will be moving and getting a lot of airflow to cool off. Even with the VTX set to it’s lowest power of 25 mW, I’d still just prefer not to leave it powered any longer than necessary.
So that means dozens of cycles of plugging in an XT30 connector and then unplugging it again, which quickly becomes tedious and hard on the finger tips.
With my HD toothpick build coming up I was thinking about this, and realized I could get an in-line switch and add XT30 connectors to either end as a way to easily switch the battery on and off. Even better since that could also plug into my smoke stopper as well.
I did a little research on Amazon and settled on these inline 250V 10A appliance switches. I would never be drawing anywhere near 10 amps while powering a quad on my bench, so it seemed more heavy duty than I’d need but I always like to be extra safe when dealing with electricity. When they showed up I was pretty happy with the quality of the housing and the hardware inside.
Making the switch was pretty easy, there was no soldering to do for the switch itself, I just had to make the XT30 male and female ends, which is a very easy soldering project. I cut some 14AWG silicone wire to what I thought was a decent length and laid out those with some heat shrink, the switch, and the XT30’s just to try to get everything straight in my head and make sure I’d thought it all through.
Soldering the XT30 connectors only took a few minutes to do, and I also went ahead and tinned the wire ends that were going into the switch just to make sure that the wires were as durable as possible.
Then it was just a matter of connecting the wires inside the switch keeping the positive and negatives lined up correctly. Except I found on my first test that plugging in the battery, the switch was live in the off position and the led light wasn’t working. I had to take it apart and swap the sides for the male and female connectors.
For the second test the switch worked as expected except that the LED wouldn’t come on. I tried a different switch with the same issue. So I’m not sure if the LED’s are just set for a higher voltage like you’d get from a house line or maybe it’s an AC versus DC thing, but the switch part worked like a charm which was the important part for me.
For such a simple and easy project, I think it’s going to make a world of difference the next time I’m trying to bind a receiver and I have to press a tiny receiver button with a pair of tweezers while simultaneously plugging in a battery. Something which really requires an extra person to do without swearing, and now should be pretty easy to do with just two hands.